OBRÓBKA SKRAWANIEM CZĘŚĆ 3

Część 3.
W ostatnim rozdziale opiszę parę rad przy obróbce poszczególnych materiałów.
Stale konstrukcyjne są najliczniejszą grupą materiałów wykorzystywanych w warunkach warsztatowych. Na ogół nie stanowią problemu, należy pamiętać o:
- Smarowaniu i chłodzeniu podczas skrawania.
- Jeżeli wiercimy głębokie otwory i mamy wiertło długie do metalu to w żadnym razie nie zaczynajmy takim wiercić, najprzód nawiercamy otwór wiertłem krótrzym np. NWKa a dalej długim, przede wszystkim przy wiertłach o małych średnicach – 3,5mm-4mm. I jeszcze trzeba miejsce wiercenia napunktować – młotek i punktak albo punktak automatyczny.
Zawsze lepiej wiercić z nieco większym posuwem i małą prędkością niż odwrotnie.
Im materiał twardszy to prędkość skrawania maleje. Na ten przykład stal węglowa między 500-1000MPa stosunek prędkości skrawania wynosi 10-6, czyli prawie połowe mniej.
Jeżeli mamy tokarkę czy frezarkę to lepiej spojrzeć do tabel.
Stale nierdzewne, skrawalność zależy od wielkości dodatków stopowych i rodzaju obróbki. Im więcej dodatków tym gorsza skrawalność. Najlepiej skrawalne są stale ferrytyczne i martenzytyczne. Tak jak pisałem w części pierwszej mają tendencję do utwardzania przy zgniocie i do przyklejania się do narzędzia. Tworzą wtedy taki garb za krawędzią skrawania, przez co spowalniają dalszą obróbkę. Narzędzie nagrzewa się i traci swoje cechy. Przy wierceniu w tych stalach bardzo istotne są parametry skrawania, czyli bardzo duży nacisk i malutka prędkość skrawania nie odwrotnie. Frez czy wiertło nie może się ślizgać bo wówczas się tępi. Ważne jest schładzanie, bo stale inox kiepsko odprowadzają ciepło i oczywiście adekwatne ostre narzędzie, w przypadku wiercenia są to wiertła HSSCo INOX. Oczywiście są takie stale nierdzewne np. duplex, w których należy zapomnieć o wierceniu czymś innym niż wiertła węglikowe z rdzeniem i chłodzeniem no i ewidentnie na dokładnych wiertarkach stołowych albo CNC.
pozostałe materiały, czyli żeliwa, żeliwa ciągliwe mają wyborne skrawalności i obrabia je się bez chłodzenia. Analogicznie miedź i jej stopy, czyli mosiądze i brązy. Jedynie aluminium ma sporą tendencję do klejenia się, przez co wymaga znacznie ostrzejszych narzędzi i większych prędkości obrotowych.

OBRÓBKA SKRAWANIEM CZĘŚĆ 2

Część 2 -obróbka skrawaniem
Teraz parę terminów:- opory skrawania, czyli siła po przyłożeniu której narzędzie może się zagłębić w materiał obrabiany.
Największej siły wymagają materiały z grupy 5 i 6. Dalej 1 i 2, i tu mała uwaga, bo choć stal nierdzewna jest niesamowicie miękka to ma tendencję do utwardzania się w strefie zgniotu a wychodzący wiór nadal ma tendencję do sczepiania się z powierzchnią przyłożenia. Rada: wiertło kobaltowe do nierdzewki jak zaczyna piszczeć to znaczy, że już nie skrawa i trzeba je przeostrzyć.
I ostatnia grupa o najniższym oporze skrawania to 3 i 4.
Dalej napiszę o temperaturach powstających w czasie skrawania na styku narzędzie - przedmiot. Najbardziej narażonym miejscem w narzędziu na nagrzanie i zużywanie jest bezspornie krawędź skrawająca, stąd chłodzenie + smarowanie powinno być zawsze brane pod uwagę. Nawet jak wiercimy jeden otwór i mamy wiertło do stali zamocowane w uchwycie to można je zanurzyć w oleju. Tak wygląda rozkład temperatur w czasie skrawania przy zachowaniu zbliżonych parametrów.

Z obrazka widać, dlaczego np. mosiądz czy żeliwo jest łatwe do skrawania a stal nierdzewna czy hartowana nie.
I na koniec nieco o skrawalności materiałów. Na skrawalność ma wpływ mnóstwo czynników, część z nich opisałem powyżej. Kwalifikuje się jeszcze do nich min.:
- Geometria ostrza i materiał, z jakiego jest wykonane narzędzie( wiertła do stali, wiertła HSS NWKa, noże tokarskie czy frezy palcowe).
- Parametry skrawania, innymi słowy siła nacisku - posuwu, prędkość skrawania.
- Metoda i intensywność chłodzenia (ciągłe czy jednorazowe).
- Sposób mocowania materiału i narzędzia (uchwyt wiertarski, imadło maszynowe).
A teraz ciekawe spostrzeżenie, taki paradoks: dla osoby, która wykonuje robotę(wiercenie czy toczenie) korzystne są stale o małej wytrzymałości, małej ciągliwości i małej ścierności. Natomiast dla użytkownika produktu najlepszym materiałem jest taki, który wykazuje dużą wytrzymałość, wysoką ciągliwość i niewielką ścieralność.

OBRÓBKA SKRAWANIEM CZĘŚĆ 1

Dzień dobry
Nowa partia tekstów: praktyka w pigułce - o obróbce skrawaniem, z wyszczególnieniem materiałów przedmiotów obrabianych. Podkreślam, że teksty są poświęcone dla majsterkowiczów, młodych szlifierzy i innych osób rozpoczynających historię z obróbką skrawaniem. Z tego względu pominę drobiazgowy opis narzędzi węglikowych stosowanych w obróbce wieloseryjnej, wysokowydajnej. Skupię się na obróbce przy pomocy standardowych narzędzi, czyli: tokarka, frezarka i ewentualnie wiertarka stołowa lub wiertarka ręczna, i wkrętarka akumulatorowa.
Obróbka skrawaniem to tak najogólniej: nadawanie obrabianym przedmiotom żądanych kształtów, wymiarów przez częściowe usuwanie ich materiału w formie wiórów, narzędziami skrawającymi ( wiertła do metalu, frezy do metalu, noże tokarskie, rozwiertaki). Skrawaniem określamy: wiercenie, toczenie, frezowanie, struganie.
Wybór najbardziej odpowiedniego materiału narzędzia skrawającego (wiertło, frez do metalu, nóż tokarski itd.…) oraz jego geometrii do zastosowania w danym materiale obiektu obrabianego jest ważne dla zabezpieczenia bezproblemowego i produktywnego procesu skrawania. Na początek podział i krótki opis materiałów obrabianych.

1 Stal to najobszerniejsza grupa materiałowa. Obejmuje szeroki zakres materiałów od niestopowych po wysokostopowe, włącznie odlewy staliwne. Skrawalność, zazwyczaj należyta, zależy w dużej mierze od twardości, zawartości węgla i dodatków stopowych. Do obróbki warsztatowej nadają się: stale konstrukcyjne (kątowniki, płaskowniki, rury i inne) staliwo, stale konstrukcyjne stopowe sprężynowe (resory), i niektóre stale konstrukcyjne stopowe przed obróbką cieplną lub odpuszczone.

2 Stale nierdzewne są materiałami stopowymi z zawartością minimum 12% chromu; inne stopy mogą zawierać nikiel oraz molibden. Odróżniamy stale nierdzewne ferrytyczne, martenzytyczne, austenityczne oraz austenityczno- ferrytyczne (typu duplex).
Cechą wspólną wszystkich tych typów jest narażenie krawędzi skrawających na duże ilości ciepła, jako że stale wykazują kilkukrotnie niższą przewodność cieplną niż zwykłe stale. Oraz tendencje do sczepiania się z narzędziem szczególnie przy krawędzi skrawającej wskutek tego zaleca się korzystanie z preparatów smarujących (Terebor preparat do gwintowania i wiercenia). Z tej przyczyny zaleca się używać specjalnych narzędzi skrawających ( np. wiertła do stali nierdzewnej, z wysoką zawartością kobaltu, odpowiednią geometrią ostrza).

3 Żeliwo, w odróżnieniu do stali, jest rodzajem materiału o krótkim wiórze. Żeliwo szare oraz żeliwo ciągliwe są całkiem łatwe w obróbce, podczas gdy żeliwo sferoidalne, żeliwo o zwartym graficie oraz żeliwo hartowane z przemianą izotermiczną przynoszą więcej problemów podczas obróbki. Wszystkie żeliwa zawierają SiC, który ściera krawędź skrawającą.

4 Metale nieżelazne jak aluminium, miedź, mosiądz są bardzo miękkie i łatwo skrawalne. Jedynie aluminium ma tendencję do przyklejania się do powierzchni natarcia i potrzebuje bardzo ostrych narzędzi i stosowania preparatów smarujących ( Terebor preparat do gwintowania i wiercenia), aluminium o 13% zawartości krzemu jest bardzo ścierne. Generalnie, poleca się tu wiertła i frezy z ostrymi krawędziami, które są przydatne do skrawania z dużą prędkością i charakteryzują się długim czasem eksploatacji.

5 Następna grupa to superstopy żaroodporne. To grupa zawierająca dużą ilość materiałów bazujących na wysokostopowym żelazie, niklu, kobalcie i tytanie. Przywierają one do narzędzia, tworzą narosty na ostrzach, utwardzają się w toku obrabiania - umocnienie przez gniot i powodują powstawanie wysokich temperatur w strefie skrawania. Bardzo trudne do obróbki <strong>a w warunkach warsztatowych nie obrabialne</strong>:).

6 Stale hartowane. Ta grupa obejmuje stale o twardości pomiędzy 45- 65 HRC, jak również żeliwo utwardzone ok. 400-600 HB. Twardość czyni te materiały uciążliwymi do obrabiania a w warsztatowych warunkach nieskrawalnymi. Podczas skrawania generują wysokie temperatury i są bardzo ścierne dla krawędzi skrawających.

Czyli reasumując 1, 3, 4 grupa jest skrawalna, 2 w ograniczonych rozmiarach, a za 5 i 6 to lepiej się nie zabierać.

Technika spawania Migiem

Cześć
Część druga będzie poświęcona wyposażeniu stanowiska spawacza MIG/MAG i samej technice. Nie jest to podręcznikowo przygotowany tekst, myślałem głównie o orientacyjnym naświetleniu tematu, jak mi się zdaży jakiś błąd to proszę o komentaż.
Wyposażenie stanowiska pracy spawacza MIG/MAG
Podstawa to półautomat MIG/MAG, czyli tzw. źródło prądu, wraz z sterowaniem i podajnikiem. Popularnie ten sprzęt nazywamy półautomat spawalniczy lub migomat. W przemysłowych spawarkach podajnik jest oddzielony od źródła prądu a wszystko umieszczone jest na wózku spawalniczym i połączone specjalnym przewodem.
Przewód spawalniczy doprowadza prąd, gaz osłonowy, oraz umożliwia sterowanie. W półautomatach o prądach DC przewyższających 200 A używane jest chłodzenie uchwytu wodą.
Butla z gazem osłonowym aktywnym - CO2 lub neutralnym np. argon. Reduktor zakręcany na butlę zmniejsza ciśnienie i przepływ. Przy większych przepływach konieczne jest zastosowanie podgrzewacza reduktora, na którym w rezultacie parowania gazu znacznie spada temperatura i może osadzać się szron. Kabel masowy z zaciskiem biegunowym.
Technika i parametry spawania.
W technice MIG/MAG stosuje się prąd stały z biegunem dodatnim (czyli uchwyt jest podłączony do bieguna dodatniego a masa do ujemnego) lub pulsacyjny (spawarki inwertorowe). Bazuje on na wytworzeniu niższych temperatur łuku prądem o małej mocy, prąd jest przerywany impulsami o wysokim natężeniu. Następuje wtedy bezzwarciowe przeniesienie roztopionego metalu na spoinę. Używany do spawania blach cienkościennych, aluminium, stali nierdzewnych i stopów miedzi. Technika ta pozwala wykluczyć porowatość spoin. Wyjątkiem od tej zasady jest spawanie bez gazu osłonowego, stosujemy wtedy drut samoosłonowy, wtedy należy zamienić biegunowość.

Zajarzenie łuku rozpoczyna się w chwili naciśnięcia przycisku w uchwycie spawalniczym. Ma ono charakter kontaktowy i ponieważ szybkość wysuwania drutu jest jednakowa to występuje samoregulacja długości łuku. Po rozpoczęciu spawania powinno się trzymać uchwyt w jednakowej odległości i pozycji od spawanego elementu, przemieszczać go z jednakową prędkością wzdłuż spoiny.

Nastawienie parametrów spawalniczych. Definiujemy napięcie, skokowo lub ciągle w zależności od posiadanego sprzętu.
Następnie w zależności od napięcia spawalniczego, musimy wyregulować potrzebny prąd spawalniczy zwiększaniem lub obniżaniem szybkości podawania drutu, następnie można ewentualnie delikatnie dostosować napięcie, aż do stabilizacji łuku spawalniczego.
W celu osiągnięcia wysokiej, jakości spawów i optymalnego ustawienia prądu spawalniczego niezbędne jest, aby odległość otworu strumieniowego od materiału wynosiła około 10*średnica drutu spawalniczego.
Zagłębienie końcówki prądowej w dyszy gazowej nie powinno przekroczyć 2-3 mm.
Rodzaje łuków spawalniczych.
Łuk krótki. Spawanie przy niskim napięciu, i prądzie w dolnej granicy tzw. zwarciowe. Przepływ stopu jest w miarę zimny i można go stosować do cienkich materiałów. Charakteryzuje się małym rozpryskiem, dobrą kontrolą spoiny, przetop jest głębszy. Natężenie prądu od 50A do 150A.
Łuk przejściowy, czyli zwarciowo natryskowy do materiałów grubszych do 6mm. Natężenie utrzymywane w granicach 185-240A, w zależności od średnicy drutu i prędkości posuwu.
Łuk natryskowy. Do materiałów o grubości powyżej 6mm. Główna zaleta to natrysk małych kropel metalu bez zwarcia. Napięcie od 250-400A.
Prędkość spawania powinna być taka, aby otrzymać stabilny łuk. Jeżeli prędkość jest za mała a napięcie za duże to na krańcu drutu tworzą się duże krople i spadają w pobliżu jeziorka. Jeżeli szybkość jest za duża a napięcie za małe to mamy wrażenie, że drut wypycha uchwyt, nie nadąża się stopić w jeziorku.
Średnicę drutu dobieramy w zależności od grubości spawanego detalu. Ogólnie przyjmujemy zasadę:
Materiał spawany do średnicy 3-4mm drut spawalniczy 0,8 mm 5kg lub mniejsze i to samo z 0,6mm, lbo ciekawostk drut samoosłonowy - https://domtechniczny24.pl/drut-spawalniczy.html
Materiał spawany od 4mm do 10mm drut 1,00 lub 1,2mm.
Materiał powyżej 10mm drut 1,6mm.
O ile to możliwe używamy druty o mniejszej średnicy (zwiększamy posuw), wterdy uzyskujemy węższą spoinę i zwiększamy stabilność łuku.
Szybkość wypływu gazu ustala się tak, aby w pełni ochronić jeziorko i łuk. Jeżeli ilość gazu będzie niewystarczająca to materiał topiony będzie się utleniał i uzyskamy porowatą spoinę i niestabilny łuk.
Można ustalić szybkość wypływu zależnie od średnicy drutu. I tak:
Dla drutu 0,6-0,8mm 10l/min.
Dla drutu 1,0-1,2mm 14l/min.
Nachylenie uchwytu spawalniczego ma wpływ na przekrój spoiny. Jeżeli uchwyt jest utrzymany pod kątem, tak, że spoina pozostaje za uchwytem to otrzymujemy szeroką spoinę przy mniejszym wtopie. Jeżeli uchwyt jest trzymany pod kątem prostym to spoina się zwęża przy jednoczesnym głębszym wtopie.
Mam nadzieją, że nic nie pomieszałem.

Spawanie metodą MIG/MAG

spawanie migomagiemCzołem
Dziś o spawaniu metodą MIG/MAG, która jest w tym momencie w przemyśle w największym stopniu rozpowszechnioną metodą spawania. Polega na jarzeniu łuku elektrycznego między elektrodą topliwą w postaci cienkiego drutu podawanego w sposób ciągły a spawanym materiałem. Łuk i jeziorko ciekłego metalu są chronione strumieniem gazu obojętnego- MIG lub aktywnego-MAG.
Skrót MIG pochodzi od Metal Inert Gas - inaczej wtedy, gdy jako gaz osłonowy używany jest gaz chemicznie obojętny argon lub hel.
MAG natomiast od Metal Active Gas, czyli wtedy, gdy jako gaz osłonowy używany jest gaz chemicznie aktywny CO2. W praktyce często w metodzie MAG podczas spawania metali używa się mieszanek argonu i CO2, daje o wiele mniej odprysków i dzięki temu jest mniej czyszczenia.
Gaz przekazywany jest z butli poprzez reduktor co2 do spawarki półautomatycznej. Uchwyt spawalniczy posiada guzik otwierający elektrozawór i przekazuje gaz w rejon spawania.
Spawanie MAG używane jest do łączenia stali konstrukcyjnych niestopowych, stali stopowych. Metoda MIG stosowana jest do spawania aluminium, magnezu, miedzi, mosiądzu i brązów.
Kiedy stosować spawanie migomatem, albo, jakie są wady i zalety:
Zalety:
Ogromnie uniwersalna i prosta do wyszkolenia metoda, zależnie od dysponowanego sprzętu można spawać cienkie i średnie elementy, w różnych pozycjach.
Dobra jakość spoin i znaczna szybkość spawania, albowiem nie ma przestojów a drut jest podawany w sposób ciągły.
Mały koszt materiału spawalniczego, duża wydajność spawania w porównaniu z metodą MMA.
Nie ma odpadów w postaci końcówek elektrod i otulin.
Wady to przede wszystkim znaczny koszt zakupu urządzeń - półautomat MIG/MAGi wyposażenia dodatkowego-butla z gazem, uchwyt spawalniczy MIG/MAG - https://domtechniczny24.pl/uchwyty-migmag-sherman.html , reduktor argon - dwutlenek.
Mała mobilność.
Spawanie półautomatem spawalniczym jest wykorzystywane we wszystkich gałęziach przemysłu ciężkiego, maszynowego, na liniach produkcyjnych, w branży remontowej i szczególnie w branży samochodowej podczas remontów karoserii.

NIVEL SYSTEM lasery obrotowe

Thursday the 22nd. Free Joomla 2.5 Templates. Custom text here
Copyright 2012

©